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Abstract
The identification of magnetic quantum critical points in heavy fermion metals
has provided an ideal setting for experimentally studying quantum criticality.
Motivated by these experiments, considerable theoretical efforts have recently
been devoted to re-examining the interplay between Kondo screening and
magnetic interactions in Kondo lattice systems. A local quantum critical
picture has emerged, in which magnetic interactions suppress Kondo screening
precisely at the magnetic quantum critical point (QCP). The Fermi surface
undergoes a large reconstruction across the QCP and the coherence scale
of the Kondo lattice vanishes at the QCP. The dynamical spin susceptibility
exhibits ω/T scaling and non-trivial exponents describe the temperature and
frequency dependences of various physical quantities. These properties are
to be contrasted with the conventional spin density wave picture, in which
the Kondo screening is not suppressed at the QCP and the Fermi surface
evolves smoothly across the phase transition. In this article we discuss recent
microscopic studies of Kondo lattices within an extended dynamical mean
field theory (EDMFT). We summarize the earlier work based on an analytical
ε-expansion renormalization group method, and expand on the more recent
numerical results. We also discuss the issues that have been raised concerning
the magnetic phase diagram. We show that the zero-temperature magnetic
transition is second order when double counting of the Ruderman–Kittel–
Kasuya–Yosida interactions is avoided in EDMFT.

(Some figures in this article are in colour only in the electronic version)
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1. Introduction

Heavy fermions started out as a fertile ground on which to study strongly correlated Fermi
liquids and superconductors [1]. There was a great deal of amazement at seeing a Fermi
liquid whose quasiparticle mass is over a hundred times the bare electron mass; hence the
name of the field. It was also surprising to find superconductors in an inherently magnetic
environment: the existence of local magnetic moments in these materials is established through
the observation of a Curie–Weiss susceptibility at intermediate temperatures (of the order of
100 K), and magnetism is supposed to be ‘hostile’ to superconductivity. It was qualitatively
understood that the large mass reflects the Kondo screening of the magnetic moments, which
is necessary to overcome magnetism [2, 3], and the proper theoretical description of the Fermi
liquid state [4] was subsequently achieved. When high temperature superconductors were
discovered in 1986, the development of the heavy fermion field was naturally interrupted—at
least partially. The hiatus proved to be relatively short-lived. As it re-emerged, however, the
field acquired a considerably different outlook, with the emphasis now placed on non-Fermi
liquid behaviour and magnetic quantum phase transitions. Since the late 1990s the field has
become a focal point [5] for the general study of quantum criticality. The interest in QCPs
is by no means unique to heavy fermions; it also arises in high temperature superconductors
among other materials [3, 6]. However, heavy fermions are particularly advantageous in one
important regard. That is, second-order quantum phase transitions are explicitly observed in a
growing list of materials of this family.

The QCP in heavy fermions typically separates an antiferromagnetic metallic phase from
a paramagnetic metallic phase. Near the magnetic QCP, transport and thermodynamical
properties develop anomalies. The T = 0 spin density wave (SDW) picture [7–10] describes
the QCP in terms of fluctuations of the magnetic order parameter—the paramagnons—both
in space and in time. This theory amounts to a φ4 theory—with φ being the paramagnon
field—with an effective dimensionality of deff = d + z. Here, z is the dynamic exponent, and
is equal to 2 in the antiferromagnetic case. So, deff is above the upper critical dimension, 4,
of the φ4 theory, for spatial dimensions d � 2. The corresponding fixed point is Gaussian.
In this picture, the non-Fermi liquid properties of the QCP reflect the singular scattering of
electrons by the paramagnons and are unrelated to the process of Kondo screening.

The most direct indication of the unusual nature of the heavy fermion quantum criticality
came from inelastic neutron scattering experiments [11, 13]. The magnetic dynamics shows
a fractional exponent and ω/T scaling over an extended range of momentum space. These
features deviate drastically from the expectations of the SDW theory. Since the SDW critical
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fixed point is Gaussian, spin damping would be controlled by some (dangerously) irrelevant
coupling, and neither fractional exponent nor ω/T scaling would be expected.

One way to resolve this impasse invokes the breakdown of Kondo screening at the magnetic
quantum critical point. On the paramagnetic side, local moments become entangled with the
conduction electrons and, in the process, are delocalized and a part of the electron fluid. At
the magnetic QCP, the magnetic fluctuations turn soft and act as a source of dissipation that
couples to the local moments; this coupling competes with the Kondo interactions and destroys
the Kondo screening. Going from the paramagnetic side to the QCP, the electronic excitations
depart from those of a Fermi liquid and acquire a non-Fermi liquid form. These non-Fermi
liquid excitations are part of the quantum critical spectrum. Unlike the paramagnons, they
are characterized by an interacting fixed point. As the control parameter is tuned further, into
the magnetically ordered side, the system is again a Fermi liquid, but the Kondo effect is
completely destroyed. An important corollary of this picture [15] is that the Fermi surface has
a sharp jump at the QCP.

To microscopically study the magnetic quantum phase transition requires an approach that
can handle not only the heavy fermion and magnetic states but also the dynamical competition
between the two on an equal footing. One suitable approach (if not the only one so far) is
extended dynamical mean field theory (EDMFT) [16–19].

In this article, we discuss the EDMFT studies of the Kondo lattice system. In addition to
giving a brief summary of the earlier analytical works [15], we will pay particular attention
to two issues. The first one deals with the magnetic dynamics near the QCP. A fractional
dynamical spin susceptibility exponent accompanies the destruction of Kondo screening [20].
The second one concerns the nature of the zero-temperature transition. When the EDMFT is
implemented such that there is no double counting of the static component of the Ruderman–
Kittel–Kasuya–Yosida (RKKY) interactions, the transition turns out to be second order [21].
We compare these results with those from some recent related works [22–24].

2. The model, the phases and the phase transitions

2.1. Kondo lattice model

We consider a Kondo lattice model,

H = Hf + Hc + HK. (1)

Here, the f electron component

Hf = 1
2

∑

i j

I a
i j Sa

i Sa
j , (2)

describes the interactions between spin- 1
2 local moments and a = x, y, z are the spin

projections. We have taken the valence fluctuations to be completely frozen, which should
give a good description of at least those heavy fermion metals that have a heavy effective mass
and that are undergoing a magnetic quantum phase transition. Without loss of generality, we
have assumed that a unit cell contains one local moment (Si ), whose spin- 1

2 nature reflects
the projection onto the lowest Kramers doublet. I a

i j describes the RKKY exchange interaction
between the local moments. In the physical systems, the RKKY interaction is generated by
the Kondo interactions. Here, we have taken it as an independent parameter, for two reasons.
First, it is useful to do so for the purpose of specifying the global phase diagram. Second, as
will be seen below, in the EDMFT approach to the Kondo lattice, it is necessary to include
this parameter at the Hamiltonian level to treat its effects dynamically (see sections 3 and 4 for
details).
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The conduction electron component of equation (1) is simply

Hc =
∑

kσ

εkc†
kσ ckσ . (3)

It is implicitly assumed that the conduction electrons alone would form a Fermi liquid, and
the residual interaction (Landau) parameters for the conduction electron component alone can
be neglected. We will consider the number of conduction electrons per unit cell, x , to be in
the range 0 < x < 1; in addition, we will assume that it is not too small, so that the physical
RKKY interaction between the nearest-neighbouring local moments is antiferromagnetic, and
not too close to 1, so that the Kondo insulating physics does not come into play. All the phases
described below are metallic.

Finally, the local moments interact with sc,i , the spins of the conduction electrons, through
an antiferromagnetic Kondo coupling JK:

HK =
∑

i

JKSi · sc,i . (4)

2.2. Kondo effect and magnetic quantum phase transition

For qualitative considerations, consider the Kondo lattice model with a fixed value of I and W ,
with a small ratio I/W ; here I is the typical (say, nearest-neighbour) interaction of Hf , and W
the conduction electron bandwidth. We further assume that Hf has an Ising anisotropy. In the
antiferromagnetic phase of Hf , the spin excitation spectrum is fully gapped. An infinitesimal
JK cannot lead to any Kondo screening. Hence, the Fermi surface encloses only the conduction
electrons, whose number is x per paramagnetic unit cell. We label this phase AFS.

On the other hand, when JK dominates over I , the standard Kondo screening does occur.
Each local moment is converted into a spin- 1

2 charge e Kondo resonance. The Fermi surface
now encloses not only the conduction electrons but also the local moments, the total number
being 1 + x per unit cell. We label this phase PML. While the existence of this phase is well
established [4], the easiest physical way to see it is to consider the limit JK � W � I . (Since
the Kondo state restores SU(2) symmetry, we have, without loss of generality, taken the Kondo
exchange coupling to be spin isotropic in equation (4).) In this limit, there is a large binding
energy (of the order of −JK) for a local singlet between Si and sc,i , and we can safely project
to this singlet subspace. In this subspace, x = 1 becomes special: here each local moment is
locally paired up with a conduction electron, and the entire system becomes a Kondo insulator.
For a system of a total of N unit cells, x < 1 amounts to creating (1 − x)N unpaired local
moments, each of which is equivalent to creating a hole in the singlet background. The Kondo
lattice model becomes equivalent to an effective single-band Hubbard model of (1 − x) holes
per site, with an infinite on-site repulsion (it is impossible to create two holes—there is only
one electron in the singlet to begin with) [25, 26]. In the paramagnetic phase, the Luttinger
theorem then ensures that the Fermi volume contains (1 − x) holes or, equivalently, (1 + x)

electrons!
These general arguments show that the AFS and PML phases are two stable metallic phases.

They differ in two important respects. The AFS is magnetically ordered while the PML is not.
Equally important, the PML has the Kondo screening while the AFS does not. Increasing
the ratio δ ≡ JK/I takes the system from AFS to PML. A key question is this: Does the
destruction of magnetism and the onset of Kondo screening occur at the same stage? If so, the
transition is distinctly different from the T = 0 SDW picture. If not—i.e., if the destruction of
magnetism happens after the Kondo screening has already set in—then the magnetic transition
can be interpreted as an SDW instability of the quasiparticles near the large Fermi surface; the
transition goes back to the realm of the T = 0 SDW transition picture.
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Microscopical studies provide a way to address this issue. A suitable method has to capture
not only the AFS and PML phases, due respectively to the RKKY exchange interactions and
the Kondo interactions, but also the dynamical competition between these interactions; this
dynamical interplay is crucial for the transition region. At this stage, the EDMFT method is
the only one we are aware of which fits this requirement.

Of course, microscopic studies always have limitations. Approximations are inevitably
used, in the process of solving a Hamiltonian or at the level of the model itself (or both).
Controlled approximations, nonetheless, provide us with not only ways of understanding
experiments but also intuitions that serve as a basis for more macroscopic approaches. This
general philosophy is readily reflected in the EDMFT approach. Even though it is ‘conserving’
(i.e., satisfying thermodynamic consistency requirements), it assumes that the dependences on
q of some irreducible single-electron and collective quantities (M(ω) and �(ω) defined in the
next section) are unimportant.

There are several reasons to believe that the EDMFT approach is useful for the
antiferromagnetic quantum transitions at hand. First, because staggered magnetization is
not a conserved quantity, the spin damping does not have to acquire a strong dependence
on q. This is especially true for metallic systems, where the dynamic exponent z associated
with the long-wavelength magnetic fluctuations is larger than 1. In the SDW case [7], for
instance, z = 2 and M(q, ω) can simply be taken as a linear function of |ω| without any
singular dependence on q. Whether the dependence on q of M(q, ω) is singular or normal can
be stated in terms of the anomalous spatial dimension η characterizing the long-wavelength
fluctuations in space: a non-zero η means that the q dependence of M(q, ω) is more singular
than that [(q − Q)2] already incorporated in Iq. So, if η �= 0, the EDMFT is expected to
fail, at least for the asymptotic behaviour. For instance, the classical critical points associated
with a finite temperature magnetic transition for d = 2, 3 must have a finite η; the EDMFT
turns out to produce (an artificial) first-order phase transition. For a quantum critical point,
on the other hand, long-wavelength fluctuations occur for deff = d + z dimensions. There is
then a greater likelihood for the vanishing of the spatial anomalous dimension, in which case
the q dependence of M(q, ω) is not singular and neglecting it will not change the universal
behaviour.

Second, as we have already discussed, the different classes of magnetic quantum critical
points of a Kondo lattice can be classified in terms of whether the Fermi surface (in the
paramagnetic zone), which is large in the paramagnetic metallic phase, stays large as the QCP
is crossed or becomes small by ejecting the local moments. Such large versus small Fermi
surfaces are well described in terms of whether the Kondo effect is preserved or destroyed,
which, in turn, is readily captured by the EDMFT approach.

We now turn to the EDMFT studies of the Kondo lattice model.

3. Destruction of the Kondo effect within EDMFT

3.1. The EDMFT equations for the paramagnetic phase

The EDMFT approach treats certain intersite (coherent and incoherent) collective effects on an
equal footing with the local interaction effects. The EDMFT equations have been constructed
in terms of a ‘cavity’ method [16], diagrammatics [17] and a functional formalism [18]. All
of these constructions yield the same dynamical equations. In the diagrammatic language, the
EDMFT is seen as entirely different from a systematic expansion [27, 28] in 1/d whose zeroth
order would correspond to the dynamical mean field theory (DMFT) [28, 29]. Instead, the
EDMFT is a resummation scheme that incorporates an infinite series of processes associated
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with the intersite collective effects, in addition to the local processes already taken into account
in the DMFT. Unlike the single-electron properties, the collective modes do not have a chemical
potential. In other words, the bottom of a ‘band’ is important and this provides a means for
spatial dimensionality to come into play in the EDMFT.

Within the EDMFT, the collective effects are organized in terms of an explicit intersite
interaction term at the Hamiltonian level. For the Kondo lattice model described in the previous
section, this is the intersite exchange term, Hf of equation (2).

There are several ways to see the details of this formalism. One way is to focus on a spin
cumulant [17], whose inverse, M(ω), is colloquially referred to as a spin self-energy matrix.
While it can be rigorously defined for any spinful many-body problem, this quantity is taken
as q independent in the EDMFT.

The dynamical spin susceptibility, on the other hand, is q dependent and is given by

χa(q, ω) = 1

Ma(ω) + I a
q

. (5)

The conduction electron self-energy is still given by �(ω), and the conduction electron Green’s
function retains the standard form:

G(k, ε) = 1

ε + µ − εk − �(ε)
. (6)

The irreducible quantities, M(ω) and �(ε), are determined in terms of a self-consistent Bose–
Fermi Kondo model:

Himp = JKS · sc +
∑

p,σ

E pc†
pσ cpσ + g

∑

p,a

Sa(φp,a + φ
†
−p,a) +

∑

p,a

wp,aφ
†
p,aφp,a . (7)

The self-consistency reflects the translational invariance:

χa
loc(ω) =

∑

q

χa(q, ω),

G loc(ω) =
∑

k

G(k, ω).
(8)

When combined with the Dyson equations, Ma(ω) = χ−1
0,a(ω) + 1/χa

loc(ω) and �(ω) =
G−1

0 (ω)−1/G loc(ω), where χ−1
0,a (ω) = −g2 ∑

p 2wp,a/[ω2 −w2
p,a] and G0(ω) = ∑

p 1/(ω−
E p) are the Weiss fields, these self-consistency equations specify the dispersions, E p and wp,a ,
and the coupling constant g.

We will focus on the case of two-dimensional magnetic fluctuations, characterized by the
RKKY density of states ρI (ε) ≡ ∑

q δ(ε − Iq) = (1/2I )
(I −|ε|). The first of equations (8)
becomes

Ma(ω) = I/tanh[Iχa
loc(ω)]

= I + 2I exp
[−2Iχa

loc(ω)
]

+ · · · (9)

where the last equality is an expansion in terms of exp[−2Iχa
loc(ω)], valid when the local

susceptibility is divergent.

3.2. Destruction of the Kondo effect

Both the Kondo screening and its destruction are encoded in the Bose–Fermi Kondo model,
equation (7). The antiferromagnetic Kondo coupling (JK) is responsible for the formation of
a Kondo singlet in the ground state and the concomitant generation of a Kondo resonance in
the excitation spectrum. The coupling of the local moment to the dissipative bosonic bath (g)
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provides a competing mechanism. To see this in some detail, we first analyse equation (7)
alone without worrying about the self-consistency conditions. We consider a given spectrum
of the bosonic bath,

∑

p

[δ(ω − wp,a) − δ(ω + wp,a)] ∝ |ω|1−ε sgn ω. (10)

The problem can be studied using an ε-expansion [30]. For small g, the Kondo coupling
dominates, leading to a Kondo screening. A sufficiently large coupling g destroys the Kondo
screening completely, reaching a local moment phase. The transition between these two phases
is of second order, and is described by a QCP where the Kondo screening is just destroyed
and the electronic excitations have a non-Fermi liquid form. The local spin susceptibility has
a Pauli form on the Kondo side. The destruction of Kondo screening is then manifested in a
divergent local susceptibility at the QCP. An important property that is shared by the Bose–
Fermi Kondo model with SU(2) spin symmetry, XY spin anisotropy or Ising spin anisotropy
is that χa

loc(τ ) ∼ 1/τ ε , at the QCP. Here, a = x, y, z, a = x, y and a = z for the SU(2), XY
and Ising cases, respectively.

Correspondingly,

χa
loc(ω) = Aa(ε)/(−iω)1−ε . (11)

While the critical amplitude, Aa(ε), depends on the spin anisotropy, the critical exponent does
not; it is equal to 1 − ε in all cases.

There is an important point that follows from the above analysis which we will use in
the following discussion of the numerical results. Within the EDMFT approach to the Kondo
lattice, if the local spin susceptibility of the Kondo lattice model is divergent at the magnetic
QCP, the corresponding local problem is sitting on the critical manifold. In other words, a
divergent local susceptibility is a signature of the critical Kondo screening and its associated
non-Fermi liquid electronic excitations.

These ε-expansion results for the Bose–Fermi Kondo model were initially used to study
the full self-consistent problem [15] with the self-consistency conditions specified in the
previous section. The fact that the critical exponent for the local susceptibility is equal to
1 − ε (equation (11)) turns out to be essential for the existence of a local QCP solution. The
self-consistent solution in the case of two-dimensional magnetic fluctuations has ε = 1−,
corresponding (equation (11)) to a logarithmically divergent local susceptibility.

3.3. Fractional exponent

The EDMFT equations in the Ising case (taking only the a = z component) were
studied numerically in [20, 21], using the quantum Monte Carlo method of Grempel and
Rozenberg [31, 32].

It was found that, at the magnetic QCP, the local spin susceptibility is indeed
logarithmically divergent. Figure 1 shows a log–log plot of the local spin susceptibility χloc(τ )

versus sin(πτ/β) at a relatively low temperature (T = 0.011T 0
K). It is seen from the figure

that the zero-temperature limit of the local susceptibility is χloc(τ ) = A/τ . This corresponds
to a frequency dependence that is logarithmically divergent in the low frequency limit. A fit
of the data yields the value of the amplitude A that is directly related to the critical exponent
of the peak value of the lattice susceptibility.

Figure 2 shows the logarithmic dependence of χloc(ωn) directly, for frequencies smaller
than the bare Kondo scale T 0

K. As already mentioned in the previous subsection, such a
divergent local susceptibility signifies that the Bose–Fermi Kondo model is located on the
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c
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K

(π/β)τ0sin
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T = 0.011 T
0
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τ0=1/T
0

K

α=4 τ0Ic ~ 0.73

Figure 1. The local spin susceptibility χloc at the quantum critical coupling (I ≈ Ic) as a function
of the imaginary time τ . The log of χloc is plotted against the log of sin−1(πτ/β). The long-
time limit, τ → β/2, corresponds to sin−1(πτ/β) → 1. The solid line is a fit in terms of
(π/β)τ0 sin−1(πτ/β). The fit yields a dynamical spin susceptibility exponent α ≈ 0.73.

0.1 1 10
ω
n
/T

0

K

10
-2

10
-1

10
0

T
0

K
χ l

o
c
(ω

n
)

 leading order

ω−2
n

I=I
c

T=0.011 T
0

K

Figure 2. Plot (log–log) of the local spin susceptibility, χloc versus the Matsubara frequency, ωn , at
both low frequencies and high frequencies. The dotted curve marked ‘leading order’ corresponds
to a logarithmic dependence of χloc on the frequency. The dot–dashed curve describes the fitting
at high frequencies (not shown); the ω−2

n dependence is dictated by the spectral sum rule.

critical manifold; correspondingly, there is a destruction of Kondo screening at the magnetic
QCP of the Kondo lattice model.

From the divergent local susceptibility, the self-consistency equation (9) also determines
the spin self-energy and, by extension, the dynamical spin susceptibility of the Kondo lattice.
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Figure 3. Inverse peak susceptibility versus. Matsubara frequency, at a low temperature
(T = 0.011T 0

K). We have used the asymptotic form appearing in the second equality of equation (9).
The dashed line is a power-law fitting with the exponent 0.72.

The inverse peak susceptibility, χ−1(Q, ωn), where Q is the ordering wavevector, is shown in
figure 3. A power-law fit yields a dynamical spin susceptibility exponent that is fractional,
close to 0.72.

The fractional critical exponent is only seen at |ωn| < T 0
K. Likewise, the Fermi liquid

(linear in ωn) damping inside the paramagnetic phase is also seen only at frequencies up to at
most T 0

K.
It is instructive to compare the above results with those of [22], which studied an Anderson

lattice model. The lowest temperature studied in [22] is 0.25T 0
K. The first non-zero Matsubara

frequency, ω1 = 2πT , is already larger than T 0
K. As a result, neither the fractional exponent

at the critical coupling I ∼ Ic nor the linear damping at I < Ic can be observed.

3.4. Failure of the local φ4 description of the Bose–Fermi Kondo model

It is tempting to consider the Bose–Fermi Kondo model as equivalent to a local φ4 theory.
One maps the Kondo coupling to an Ising chain (along the imaginary time τ axis) with
1/τ 2 interactions [33]. In addition, the bosonic bath, with a spectrum of equation (10),
adds an additional retarded interaction, 1/τ 2−ε . The corresponding local φ4 theory is
Z ∼ ∫ Dφ exp[−S] where

S =
∑

ωn

(
r +

1

gc
|ωn|2 + κb|ωn|1−ε + κc|ωn|

)
|φ(ωn)|2 (12)

with the constraint |φ|2 = 1. Indeed, such a local φ4 theory emerges in the large N limit of
a certain O(N) generalization of the Bose–Fermi Kondo model. In the N = ∞ case, two
of us [20] showed that, while the destruction of Kondo screening does occur, the fractional
exponent is absent. Subsequently, Pankov et al [24] demonstrated that this conclusion remains
valid to order 1/N .
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Recent works have considerably clarified the limitations of the large N limit and
demonstrated the failure of the local φ4 description of the Bose–Fermi Kondo model, at
least for ε � 1/2 (including the case of self-consistent ε = 1−). For the local φ4 theory,
ε = 1/2 is the ‘upper critical dimension’ [34]. At ε > 1/2, the critical point would then
be Gaussian, implying violations of both ω/T scaling and hyperscaling. A number of recent
studies on the Bose–Fermi Kondo and closely related impurity models [35–38], have shown
that the quantum critical point is interacting over the entire range 0 < ε < 1, obeying ω/T
scaling and hyperscaling. These results support the observation [20] of ω/T scaling in the
(self-consistent) case of ε = 1−. They also imply that the Bose–Fermi Kondo model is perhaps
the simplest model in which the standard description of a QCP—in terms of a classical critical
point in elevated dimensions—fails. Physically, the Kondo effect, involving the formation
of a Kondo singlet, is intrinsically quantum mechanical. In the language of a path integral
representation for spin, the Kondo singlet formation necessarily involves the Berry phase term.
It is then natural for the destruction of Kondo screening to be inherently quantum mechanical
and, by extension, for the QCP of the Bose–Fermi Kondo model to be different from its
classical counterpart at a higher dimension. A more in-depth understanding of the underlying
mechanism for this effect will surely be illuminating.

4. Magnetic phase diagram of Kondo lattices within EDMFT

We now address whether the above results, derived from the paramagnetic side, are pre-empted
by magnetic ordering. To do so, we approach the transition from the ordered side.

4.1. The EDMFT approach from the ordered side

The EDMFT equations for the antiferromagnetically ordered phase require normal order-
ing [16–18] of Hf : Hf = ∑

i j Ii j(
1
2 : Sz

i :: Sz
j : +〈Sz

j 〉Si − 1
2 〈Sz

i 〉〈Sz
j 〉), where the normal-

ordered operator is : Sz
i :≡ Sz

i − 〈Sz
i 〉. The effective impurity model and the self-consistency

conditions are similar to equations (7) and (8), except for the following modifications. First,
there is a local magnetic field—the static Weiss field, hloc—coupled to Sz . This local field,
arising through IQ, must be self-consistently determined by the magnetic order parameter
〈Sz〉Himp .

Second, the conduction electron propagators are also influenced by magnetism. It turns
out that the second feature has to be treated with care so that there is no double counting of
the RKKY interactions between the local moments. In [21], we avoided double counting the
RKKY interactions by working with a featureless conduction electron band; in this case, the
magnetism is driven by the interaction Iq already incorporated at the Hamiltonian level (in
Hf ). We will expand on this issue in the next section.

Our phase diagram is shown in figure 4. At I < Ic, the system is in the paramagnetic
metal phase. The coherence scale of the Kondo lattice E�

loc marks the temperature/energy
below which Kondo resonances are generated and the heavy Fermi liquid behaviour occurs.
In particular, the Landau damping is linear in frequency at |ωn| < E�

loc. At I > Ic, the system
has an antiferromagnetic ground state. There is a finite temperature first-order transition at
the Néel temperature, TN. However, TN continuously goes to zero as the RKKY interaction
is reduced. Within the numerical accuracy, it vanishes as I → I +

c [21], the same place where
E�

loc does so as I → I −
c . Plotted in figure 4 is the magnetic order parameter, mAF, at the lowest

temperature studied, T = 0.011T 0
K. Again, it is seen to continuously go to zero as I → I +

c .
Further support for the second-order nature comes from the study of a nominally

paramagnetic solution at I > Ic. This solution to the paramagnetic EDMFT equations
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Figure 4. The coherence scale of the paramagnetic heavy fermion phase and the magnetic order
parameter, mAF, versus the tuning parameter, δ ≡ I/T 0

K. Both quantities are determined at
T = 0.011T 0

K. Also shown is the Curie constant of an unphysical solution without a magnetic
order parameter at δ > δc. Lines are guides to the eye. The fact that all three curves meet at δc
implies that the zero-temperature transition is continuous.

coexists with the solution to the ordered EDMFT equations at I > Ic. But this ‘paramagnetic’
solution is found to contain a Curie component C/T in the static local susceptibility with
C = limT →0 T χloc(T, ωn = 0) or, equivalently, a jump of magnitude C/T in χloc(T, ωn) as
ωn goes to zero. (Its spin self-energy at zero frequency and zero temperature tracks I .) What
this implies is that the ‘paramagnetic’ solution is not the physical one; instead, the physical
ground state corresponds to the magnetic solution. Nonetheless, the study of this unphysical
paramagnetic solution is helpful to the determination of the zero-temperature transition. It is
seen in figure 4 that C extrapolates to zero at the same value of Ic (I → I +

c ) at which E�
loc goes

to zero (I → I −
c ). This provides an additional consistency check for the critical interaction

where the paramagnetic phase terminates.
To summarize figure 4, within numerical accuracy, all relevant scales vanish

simultaneously at Ic, and the quantum transition at zero temperature is continuous.

4.2. Avoiding double counting of the RKKY interaction

To discuss the double-counting issue in some detail, we revisit the procedure by which
antiferromagnetism is treated in the standard DMFT [28]. Here, the dynamical equations
are constructed entirely in terms of local single-particle quantities; two-particle responses
are derived once the dynamical equations have been solved. On the paramagnetic side, the
two-particle susceptibility satisfies the following Bethe–Salpeter equation (in matrix form):

χ−1(q, ω) = χ−1
p−h(q, ω) − Iir(q, ω). (13)

Here χp−h(q, ω) is the particle–hole susceptibility bubble of the full single-particle propagators
G(k, ε). The triplet particle–hole irreducible vertex has the following form (again, in matrix
form) [39, 40]:

Iir(q, ω) = χ−1
p−h,loc(ω) − χ−1

loc (ω), (14)
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where χp−h,loc(ω) is the particle–hole susceptibility bubble of the full local single-particle
propagators G loc(ε). Combining this with equation (13) implies that, on the paramagnetic
side,

χ−1(q, ω) = �Iq + χ−1
loc (ω) (15)

where

�Iq ≡ χ−1
p−h(q, ω) − χ−1

p−h,loc(ω). (16)

For our Kondo lattice model, �Iq has the meaning of the generated RKKY interaction (after
inverting the matrix in the ( f, c) space). How can �Iq appear in the (particle–hole) spin
response and not contribute in the dynamical equations for the single-particle quantities? The
answer lies in the way in which the Brillouin zone is divided in DMFT into ‘special’ qs and
‘generic’ qs [41]. �Iq of equation (16) is non-zero only at ‘special’ qs. The dynamical
equations are constructed in terms of quantities that are local, i.e. summed over q: the special
qs, having measure zero, are not important for this summation; only ‘generic’ qs have the
phase space to contribute to the local quantities. To be more specific, consider the hypercubic
lattice. �Iq depends on q only through the combination X (q) = (1/d)

∑d
α=1 cos(qα) [41].

The dispersion X (q) is O(1) (in the d → ∞ limit) only for ‘special’ qs,e.g. along the diagonals
of the Brillouin zone, q1 = q2 = · · · = qd . On the other hand, for ‘generic’ q, X (q) vanishes
(being formally of order O(1/

√
d), as can be seen from the central limit theorem). When

X (q) vanishes, χp−h(q, ω) = χp−h,loc(ω), so �Iq vanishes! The antiferromagneticwavevector
Q (Qα = π for all α), belongs to the set of special qs, so �IQ �= 0. And the antiferromagnetic
instability, from the paramagnetic side, is signalled by χ−1(Q, ω) = �IQ + χ−1

loc (ω) = 0,
at ω = 0. On the antiferromagnetic side, the non-zero value for the corresponding �IQ,or

is implemented through the introduction of the doubling of the conduction electron unit cell
and different single-particle propagators at the two sublattices. Formally, this doubling of
the conduction electron unit cell can be described in terms of an effective susceptibility,
χor(Q, ω):

χor
−1(Q, ω) = �IQ,or + χ−1

loc (ω). (17)

Here, again, �IQ,or = χ−1
p−h(Q, ω) − χ−1

p−h,loc(ω). The instability of the ordered state is

signalled by χor
−1(Q, ω) = �IQ,or + χ−1

loc (ω) = 0, also at ω = 0. Because the effective
RKKY interaction incorporated on the ordered side, �IQ,or, is the same as its counterpart on
the paramagnetic side, �IQ, the magnetic transition is in general of second order. There is a
major limitation to this approach. The RKKY interaction, being zero at generic wavevectors,
does not have enough phase space to dynamically interplay with the Kondo interaction. So the
self-consistent dynamical equations of DMFT do not incorporate �Iq at all, and the Kondo
screening is always present including at the magnetic QCP. The quantum critical behaviour
falls in the SDW category, as in any static mean field description of Kondo lattices.

The EDMFT is introduced precisely to allow this dynamical interplay. Here, an intersite
interaction, as given in Hf of equation (2), is elevated to the Hamiltonian level. The
Bethe–Salpeter equation (13) still applies. However, the particle–hole irreducible vertex
becomes [17]

Iir(q, ω) = χ−1
p−h,loc(ω) − χ−1

loc (ω) − χ−1
0 (ω) − Iq, (18)

where Iq is the Fourier transform of the intersite interactions, Ii j , already included at the
Hamiltonian level. We have, on the paramagnetic side,

χ−1(q, ω) = �Iq + Iq + M(ω), (19)
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where M(ω) = χ−1
loc (ω) + χ−1

0 (ω) is the spin self-energy. Likewise, we can write the effective
susceptibility that comes into the stability analysis of the ordered phase as

χor
−1(q, ω) = �Iq,or + Iq + M(ω). (20)

It was shown in [17] that the EDMFT can be rigorously formulated only when all q are
considered to be generic. (Otherwise, Iq is formally of order O(d) at the special qs, and no
paramagnetic phase could exist.) This implies that �Iq = 0 for all q. From the Kondo lattice
point of view, this is equivalent to saying that we will only use Iq to represent the RKKY
interaction and will not incorporate additional RKKY interactions generated from the fermion
bubbles (illustrated in figure 7 of [17]).

In order to be consistent, one would also need to demand that �Iq,or = 0 on the ordered
side. Otherwise, we would be counting additional contributions to the RKKY interaction on
the ordered side that were absent on the paramagnetic side. This requirement (�Iq,or = 0)
was achieved in [21] by using a featureless conduction electron band. The latter ensures that
all wavevectors are generic in the sense defined earlier. Within this procedure, the magnetic
ordering is entirely driven by Iq, and the instability criteria from the paramagnetic and ordered
sides coincide. Therefore, the quantum transition is naturally of second order, as was indeed
seen numerically in [21]; see figure 4 above.

The procedure used in [22] and [23] amounts, in our language, to keeping �IQ = 0 while
�IQ,or �= 0. On the paramagnetic side, all wavevectors, including the ordering wavevector
Q, are taken as generic, and �IQ = 0, as in all EDMFT schemes. On the ordered side, Q
is considered as one of the special wavevectors in the sense defined earlier and, through the
conduction electron unit-cell doubling, �IQ,or �= 0 (as in DMFT). The ordered side then has
an added energy gain, and the magnetic quantum transition is of first order. (That an EDMFT
approach to Kondo lattices which incorporate a DMFT-like fermion bubble on the ordered side
alone yields a first-order transition at zero temperature was in fact already recognized in [23].)
The procedure would actually lead to a first-order magnetic transition at zero temperature in
any itinerant model, including any T = 0 SDW transition without any Kondo physics.

We close by noting that the different EDMFT schemes that we have discussed can be
equivalently seen as different local approximations to a Baym–Kadanoff-type functional.

5. Experiments and other theoretical approaches

An important manifestation of the destruction of the Kondo screening is that f electrons
participate in the Fermi volume on the paramagnetic side but fail to do so on the
antiferromagnetic side. There is a sudden reconstruction of the Fermi surface across the
magnetic QCP. Fairly direct electronic evidence of this effect has appeared in the recent Hall
effect measurement for YbRh2Si2 [42]. The Hall coefficient shows a rapid crossover as a
function of the control parameter—the magnetic field in this case. The crossover sharpens
as temperature is lowered, extrapolating to a jump in the zero-temperature limit. The jump
occurs at the extrapolated location of the magnetic phase boundary at zero temperature. Related
features have also been observed for YbAgGe [43].

A more direct probe of the Fermi surface comes from the de Haas–van Alphen effect.
Recent dHvA measurements [44] for CeRhIn5 provide tantalizing evidence of a large
reconstruction of the Fermi surface, with a divergent effective mass, at a QCP. Specific heat
measurement under a magnetic field [45] points to the possibility that CeRhIn5 undergoes a
second-order magnetic quantum transition at the magnetic field of the strength used in the
dHvA experiment. If the existence of the magnetic QCP is indeed established, CeRhIn5 will
provide more insights into quantum criticality than CeRh2Si2. In the latter system, a large
Fermi surface reconstruction has also been seen in the dHvA measurements [46], but the
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zero-temperature transition is likely to be first order with a large jump in the magnetic order
parameter across the transition.

The fractional exponent and ω/T scaling in the magnetic dynamics have been seen,
since early on, in the antiferromagnetic QCP of Au-doped CeCu6 [11, 12] (whose magnetic
fluctuations have a reduced dimensionality) and in some frustrated compounds [13, 14].
(On the other hand, the SDW behaviour is observed in the magnetic dynamics of
Ce(Ru1−x Rhx)2Si2 [47], which has quasi-3D magnetic fluctuations.) Related non-trivial
scaling exponents—that are relatively easy to connect with theory–have come from the
Grüneisen ratio [48].

Theoretically, there have also been efforts to study the Kondo lattice systems using certain
mixed boson–fermion representations for the local moment spin operators [49–51]. Such
auxiliary-particle representations set up the basis for a picture with spin–charge separation.
However, it has been hard to use this formalism to properly capture the Kondo screened Fermi
liquid phase [52], making it difficult to study its destruction as well.

It may also be possible to describe the destruction of Kondo screening in terms of the
static mean field theories based on the slave boson and an RVB order parameter, supplemented
by gauge field fluctuations. The corresponding phase diagram has recently been studied in
some detail [53]. The magnetic transition and destruction of the Kondo screening are found to
occur at different places in the zero-temperature phase diagram [53], so the magnetic quantum
transition is still of the SDW type. We believe that this is a reflection of the static nature of the
mean field theory.

Finally, it is instructive to put in the present context the QCP proposed for the transition
from an antiferromagnet to a valence bond solid in frustrated quantum magnets [54]. Dubbed
a ‘deconfined’ QCP, it has certain properties that may be qualitatively compared with the
local quantum criticality: the QCP—containing exotic excitations—is surrounded by two
conventional phases, and the corresponding energy scales of both vanish as the QCP is
approached. Hence, it would be enlightening to explore the concrete connections (if any)
of this approach with the physics of the destruction of Kondo screening. For this purpose, it
would be necessary to either construct microscopic spin models for the deconfined QCP or
reformulate the Kondo screening beyond microscopic approaches.

6. Summary and outlook

To summarize, we have discussed some of the microscopic approaches underlying the local
quantum critical picture. Beyond the initial studies based on an ε-expansion renormalization
group method, the most extensive investigations have been carried out in Kondo lattice models
with Ising anisotropy. The latter have allowed the study of both the destruction of Kondo
screening and the concomitant fractional exponent and ω/T scaling in the magnetic dynamics.
We have also discussed the magnetic phase diagram and summarized the evidence for the
second-order nature of the magnetic quantum phase transition. The EDMFT studies of Kondo
lattice models with continuous spin symmetry (SU(2) or XY ) are mostly confined to ε-
expansion studies. Efforts to access the quantum critical point in these systems, beyond the
ε-expansion, are still under way. A dynamical large N limit, for instance, has recently been
shown to be promising [35].

The microscopic approaches described here have shown that critical modes beyond the
order parameter fluctuations exist, and the modes are associated with the destruction of Kondo
screening. These insights have a number of phenomenological consequences—not only in
magnetic dynamics but also in the Fermi surface properties and in thermodynamics—which
have been supported by existing and emerging experiments. The insights will also help in the
search for a field theory that describes quantum critical heavy fermions. Finally, they may very
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well be broadly relevant to the exotic quantum critical behaviour in other strongly correlated
systems such as doped Mott insulators.
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